
Dudhane & Ravi International Journal on Emerging Technologies 11(2): 770-774(2020) 770

International Journal on Emerging Technologies 11(2): 770-774(2020)
ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

Enhancement of Features of 8 Bit RISC Processor by Implementing 8 Bit
Shift/Add Multiplier

Tanaji M. Dudhane
1
and T. Ravi

2

1
Research Scholar, Department of Electronics and Communication Engineering,
Sathyabama Institute of Science and Technology, Chennai, (Tamilnadu), India.

2
Research Supervisor, Department of Electronics and Communication Engineering,

Sathyabama Institute of Science and Technology, Chennai, (Tamilnadu), India.

(Corresponding author: Tanaji M. Dudhane)
(Received 23 December 2019, Revised 15 February 2020, Accepted 18 February 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: The 8 bit computational engines are superseded by 32 bit core. The 32 bit core is highly dense
and available in smaller size as compared to earlier 8 bit cores thanks to improvement in process
technology. Though market is populated with 32 bit core, the 8 bit cores are still very relevant and being
used in many applications. The PIC16F84 is not capable for execution of 16 bit instructions as well as lack of
multiplication operation. This paper integrates the 8 bit multiplier to the 8 bit RISC processor for
enhancement of its multiplication capability. This work is an extension of previous work which is in regards
with 8 bit core and it's feature enhancement to solidify it against current 32 bit core. The previous work
added Co-operative ALU (CALU) in 8 bit core. Herein computational strength of 8 bit core is enhanced by
implementing 8 bit multiplication using Shift/Add method. Using FPGA as reconfigurable hardware, the
integration of multiplier is carried out with Xilinx 14.7 platform modifying instruction format having 15 bits.
The design is carried out using Xillinx 14.7 software tool and Virtex xcv50 device platform as a hardware tool.
The features enhancement enables 8 bit core to perform 16 bit addition/subtraction operations and 8 bit
multiplication with 16 bit result.

Keywords: CO-ALU, 8 bit core, shift/add multiplier FPGA.

I. INTRODUCTION

The era of Internet of Thing has begun. It demands the
sensor node processors with high capabilities as well as
low power consumption. Also, the automation in the
automotive field is increasing as well, which also
demands low power sensor node processors with strong
capabilities. Thus, we have selected the 8-bit PIC 16F84
processor for the functional enhancement, where we will
enhance its capabilities with the fast multiplier unit
based on shift/add multiplier design. This paper
proposed complete multiplier design which is simulated
and integrated with 16F84 microcontroller of 8 bit. The
result is simulations of multiplication 8 bit shift/add
multiplier design for improvement in area and speed.
Here are some researches carried out in the multiplier
design. Ram et al., (2016) has designed the 8-bit Area
Efficient Modified Vedic multiplier. Urdhva- Tiryagbhyam
sutra is the base of multiplier design which is ancient
vedic. The multiplier is designed using the Verilog HDL
and synthesized on the Spartan 3E platform. It has been
designed using the BEC adder over the conventional
ripple carry adder in order to improve the area utilization
[1]. As the process of repeated additions is the
multiplication, the adder is the main constituent in the
multiplier. The speed of the adder performs the vital role
in the performance of the multiplier algorithm. Gokhale
and Gokhale (2015) has designed Vedic Multiplier using
carry select adder for area and delay. The significant
improvement in speed in the design shows than the
Modified Vedic Multiplier and also utilizes lesser area
[2]. Gupta et al., (2014) has proposed technique of

Vedic multiplication using the compressor. The multiplier
is designed using the 4:2 and 5:7 compressors as
replacement to the adders. The method shows the 6%
of hardware reduction than the conventional Vedic
multiplier [3].
Dey and Chattopadhyay (2017) has proposed the 8-bit
High performance binary multiplier using the Vedic
sutras with the 16nm technology. The design is based
on the sutra of Urdhva-Tiryagbhyam. It takes about
99.50% less time delay compared to the 65nm
technology, which considerably reduces the power
consumption [4]. Kumar and Charlie (2014) has
presented the image processing using 2d-DWT
Multilevel. The multiplier and accumulator unit in the FIR
filter is redesigned using the Novel Vedic multiplier
instead of conventional Vedic multiplier. There is
reduction in area and power requirements using the
Novel Vedic multiplier [5]. Kahar and Mehta (2017) has
demonstrated the implementation of 4, 8, 16, 32 and 64-
bit Vedic multiplier which consumes 11.477 ns, 21.550
ns, 28.086 ns, 30.956 ns and 44.377 ns respectively.
The area and delay requirements are compared with the
other author’s proposed designs. Significant
improvement has been recorded in speed [6]. Kunchigi
et al., (2012) has proposed vedic multiplier with high
speed. The base of the design is the Urdhva
Tiryagbhyam sutra. The implementation is performed on
the Spartan 3E platform. It has been recorded that the
method takes 4.585ns of time to perform the
multiplication which is faster than the Array and Booth
multipliers [7]. Pohokar et al., (2015) has implemented

e
t

Dudhane & Ravi International Journal on Emerging Technologies 11(2): 770-774(2020) 771

16 bit multiplier which multiplies 16 bit number using
Urdhva-Tiryagbhyam sutra. Carry save adders are used
as the part of the multiplier for addition of partial and
final products. The 16-bit Vedic Multiplier using carry
save adder takes 28.779 ns. The multiplier is designed
using the VHDL language in Xilinx ISE 10.1. The results
are compared with the array multiplier design [8].
Katreepalli and Haniotakis (2017) hierarchal
approachdesign of efficient power-delay of Vedic
multiplier using MCC which is Manchester Carry Chain
adders. Lower power-delay product requirement using
MCCis the proposed work of multiplier design than
architectures of Vedic multipliers which are in existence
[9]. Goswami et al., (2014) has expressed in the paper
about energy efficient and digitally controlled
impedance, low voltage multiplier. The standards of the
low voltage digitally controlled impedance (LVDCI) are
available on reconfigurable hardware. By using the
LVDCI block on the 28nm technology, author has
demonstrated performance of the Vedic multiplier in the
various temperatures [10]. Lakshmi et al., (2016) has
proposed high speed vedic BCD multiplier using
Vinculum method. Due to the use of vinculum method
there are only 1 to 5 numbers, this reduces the carry
generation and the propagation there by improving the
performance in terms of the delay. The BCD multiplier
with vinculum takes 12.74 ns which is far faster than
others [11].
Rao et al., (2016) has proposed the complex multiplier
using minimum delay real multiplier architecture.
Proposed design will play noticeable performance
improvement in the high performance wireless
communication systems. The proposed designed takes
the lesser computation time than the complex array
multiplier and the complex booths multiplier [12]. Huddar
et al., (2013) has presented the speed, area efficient
ALU design using ancient Vedic mathematics and
implemented it on the reconfigurable hardware. The
implementation shows that the proposed method is 2
times faster and consumes 3% lesser area than
conventional one. The implementation is done on
Spartan 3E platform [13]. Gupta et al., (2012) has
presented design of speed multiplier using reversible
logic gate. Speed efficiency as well as energy efficiency
for the arithmetic and logic unit which affects on
efficiency of power, provided by reversible logic gate.
Because of this the design presented requires less area
for gates and hence making ALU more powerful. The
designed unit of ALU is efficient in
microcontroller/microprocessor and the performance of
central processing unit depends on performance of
ALU. Optimization is achieved by developing MAC unit
of digital signal processing. Such design of ALU is used
for optimization of different algorithms which are based
on IIR, FIR, FFT, etc. for DSP [14]. For the formation of
complex digital circuits, FPGAs are conceptually array
of Configurable Logic Blocks (CLBs), connected
together thorough a vast connecting matrix. The paper
Implements logical, add, sub, inc, dec. instructions but
not multiplication instruction also having instruction
length of 20 bits, requiring more memory space [15].
In a single FPGA, one or more
microprocessor/microcontrollers can be embedded.
Though the work talks about the design of
microcontrollers and microprocessors completely

implemented in FPGA, none of the work is related with
the implementation of multiplication instruction. The
instruction format is 13 bits as compared to our work
having 15 bit instruction format [16, 17]. The research
work by JER Prieto and FM Santa, said about the
optimization in fast systems using 14 bit instruction
length [18], in contrast, our work using 15 bit format, in
which MSB bit, separates the original instructions of 8
bit and additional instructions of 16 bit. Vedic multiplier
is based on vertical and crosswise structure of vedic
mathematics [19, 20, 21 24]. We have proposed the
design of multiplier using Shift/Add method and its
integration to RISC processor for enhancement of its
functionality and finally developing VHDL code for the
multiplier, using FPGA, for Improvement in speeds and
area. The power dissipation is 600 mW [22] but by
implementing 11 more instructions having size of 16
bits, improving power dissipation of 15 mW [17]. Power
dissipation, propagation delay, chip area, these
parameters are discussed and calculated from
simulation results [23].Enhancement 8 bit processor to
execute 16 bit instructions with addition of more number
of 16 bit instructions, is the lack of research work of the
previous papers.
The previous study of many research paper was the
lack of implementation of 16 bit instructions with the
original 8 bit core as well as lack of multiplication
operation. Original processor PIC16F84 implements
instruction like arithmetic, logical etc. category with 8
bits. We have selected the 8 bit processor for the
functional enhancement. The 8 × 8 multiplier is
integrated to the RISC processor, implementing
multiplication operation where the processer requires
number of operation repeatedly. The proposed system
using reconfigurable hardware platform like Field
Programmable Gate Array that is FPGA , implements
the 8 bit multiplication operation for the PIC 16F84,
RISC processor for improvement in speed and area.
The aim of this paper is to design and implement 8 bit
shift/add multiplier. The paper consists as follows.
Section Second describes the proposed design and
requirement of multiplier, Section III describes
methodology, Section IV with Results and conclusion in
the Section V.

II. PROPOSED DESIGN

As shown in Fig.1, 8 bit multiplier is comprised of the
following blocks. First block is 8 bit register for
multiplicand, second block is 8 bit register for multiplier,
third block is 16 bit register for adder and finally forth
block is shift and add control logic. Shifter is for right
shifting and checking LSB. If LSB is 0, add 0 as it is
otherwise add multiplicand.

Fig. 1. 8 bit shift/add multiplier block diagram.

Dudhane & Ravi International Journal on Emerging Technologies 11(2): 770-774(2020) 772

After addition, result is shifted towards left by one bit.
Multiplication produces 16 bit result. The design is
coded in VHDL and simulation is carried out for proper
timing and functionality.

III. METHODOLOGY

A. Multiplier Design
Proposed multiplier design is based on shift and add
method.

Fig. 2. Block diagram of Multiplier design.

Fig. 2 demonstrates the design flow for 8 bit
multiplication. It is comprised of registers to hold
multiplier, multiplicand and dummy register, whose
value is 0 and being used only once in the beginning.
Execution of multiplication operation starts with the
reception of ‘start’ trigger pulse and ends with the
generation of ‘stop’ pulse. Operand registers are 8 bits
and result register is of 16 bits. The controller along with
adder and shift registers participates in multiplication
operation. The multiplier is shifted towards right by one
bit position. Result register is shifted towards left by one
bit position for each round of multiplication operation.
For example for 8 bit operation multiplier gets shifted
towards right by one bit position 8 times as the
multiplication operation is being conducted for 8 bit
operands.
Similarly, result register is shifted towards left by one bit
position 8 times. After shifting of multiplier towards right
by one bit position, the LSB bit comes out of it, decides
whether 0 or multiplicand is to be added with previous
result. For example if bit is 0, ‘0’ is added otherwise
multiplicand gets added in previous result. Controller
continues operation till it completes 8

th
 round.

B. Controller Design
The Fig.3 shows the FSM diagram controller. The
multiplier goes through various states such as initial
state, load operand, store operand and computation
state. Initially system is in initial state. It remains in initial
state until it receives start trigger pulse. There in,
operands such as multiplicand and multiplier loaded into
respective holding register.
Once operands are loaded, system enters into
computation state and carries out computation. For
initial state of computation, count value is 0 and it gets

incremented after completion of each round of
operation. System remains in computation state as long
as count value is less than 8. It leaves computation
stage and enters into store operand stage when count
value reaches at 8. In this state, end result is stored.

Fig. 3. FSM diagram of the controller.

C. Multiplicand Design
The basic design for the Multiplicand block is that of an
8-bit register.

Fig. 4. Diagram of Multiplicand.

The Fig. 4 shows the multiplicand diagram having 8 bits.
It is 8 bit register having bits D0 – D7. Left shift logic is
carried out for 8 bit multiplicand and right shift logic is
achieved for 8 bit multiplier.

D. Adder Design
Fig. 5 is the Data flow of the 8 Bit multiplication.

Fig. 5. 8 Bit multiplication data flow diagram.

Dudhane & Ravi International Journal on Emerging Technologies 11(2): 770-774(2020) 773

Algorithm:
– Start
– Initialize count = 0
– Shift result register by count value.
– Shift multiplier right and check LSB bit.
– If bit is 0, add dummy register value with result
register.
– If bit is 1, add multiplicand value with result register.
– Increment counter.
– If less than 8, go to 3, otherwise stop.
Fig. 6 shows the Enhanced CALU architecture. While
enhancing the ALU architecture of the original 8 bit
RISC processor, 8 bit multiplier is integrated with 8 bit
processor and 16 bit co-operative ALU is integrated.
For 16 bit Co-ALU, the size of instruction register is
changed from 14 bits to 15 bits adding one bit in MSB.
This bit differentiates the 8 bit and 16 bit instructions. If
MSB is 0 in instruction register, then 8 bit instructions
are executed and when MSB is 1, 16 bit instructions are
executed.

Fig. 6. Enhanced CALU architecture.

IV. RESULTS

The results are captured for small, moderate and big 8
bit numbers.The original PIC 16F84 RISC processor, is
8 bit having lack of multiplication operation. For the
enhancement of its functional ability to make it
compatible with 16 or 32 bit processors, 8 by 8 bit
multiplier is integrated, simulated. VHDL code is
developed for small, big and moderate 8 bit numbers.
Simulation of multiplication result are shown, enhancing
its functionality and same processor is developed as an
IP core.
Fig. 7 shows the simulation of the multiplication result.

Fig. 7. Simulation diagram of multiplication of two small
numbers.

Fig. 7 represents a simulation diagram for two small
numbers i.e. A=02 and B=05. The overall time required
is shown in terms of number of cycles.

Fig. 8. Simulation diagram of multiplication of two
moderate numbers.

Fig. 8 shows a simulation diagram for two moderate
numbers i.e. A=13 and B=14. The overall time required
is shown in terms of number of cycles.

Fig. 9. Simulation diagram of multiplication of two big
numbers.

Fig. 9 represents a simulation diagram for two big 8 bit
numbers i.e. a=241 and b=255. The overall time
required for the multiplication of two 8 bit large value
numbers is shown in terms of number of cycles.

V. CONCLUSION

The successful implementation of 8 bit multiplier is
achieved. The VHDL code is successfully built using
Xilinx ISE tool and simulation results are verified. The
final implementation is done using Virtexxcv50 hardware
platform. The results are found for different 8 bit
numbers.

VI. FUTURE SCOPE

The 8 bit multiplier is implemented and integrated with 8
bit processor. This is additional enhancement which is
implemented with the processor which was lack of this
in hardware. Future scope is that, such microcontroller
may be used where multiple operations required
multiple iterations for speed improvement. Also, using
Soft cores, implementing on FPGA, gives a solution for
development of such processors with high speed and
with minimum area for industrial applications.

Conflict of Interest. Co-operative ALU (CALU) and
Arithmetic Logic Unit (ALU). C-ALU: This co-operative
arithmetic logic unit (CALU), is integrated to the 8 bit
PIC 16F84 PIC processor, which executes 16 bit

Dudhane & Ravi International Journal on Emerging Technologies 11(2): 770-774(2020) 774

instructions, making compatible this 8 bit processor with
16 bit or even 32 bit processors. Without changing the
original functionality of the 8 bit processer, this 16 bit
CALU, performing 16 bit instructions. So, 11 more
arithmetic and logic instructions, having width 16 bits,
executed with the addition of CALU. ALU: For 8 bit
RISC processor 16F84, having 8 bit arithmetic and logic
unit, performing 8 bit operations. This ALU is performing
and executing 8 bit Instructions This ALU is responsible
for executing 8 bit arithmetic and logical instructions of
the origin core. One MSB bit which is newly added in
instruction format, making 15 bits, differentiates
between 8 bit and 16 bit instructions.

REFERENCES

[1]. Ram, G. C., Lakshmanna, Y. R., Rani, D. S., & Sindhuri, K.
B. (2016). Area efficient modified vedic multiplier. International
Conference on Circuit, Power and Computing Technologies in
India, 1-5.

[2]. Gokhale, G. R. & Gokhale, S. R. (2015). Design of area
and delay efficient Vedic multiplier using Carry Select Adder.
International Conference on Information Processing in India,

295-300.
[3]. Gupta, R., Dhar, R., Baishnab, K. L., & Mehedi, J. (2014).
Design of high performance 8 bit Vedic Multiplier using
compressor. International Conference on Advances in
Engineering and Technology in India, 1-05.
[4]. Dey, K., & Chattopadhyay, S. (2017). Design of high
performance 8 bit binary multiplier using vedic multiplication
algorithm with 16 nm technology. First International Conference
on Electronics, Materials Engineering and Nano-Technology in
India, 1-05.
[5]. Kumar, J. V., & Charlie, P. C. K. (2014). Design of modified
vedic multiplier and FPGA implementation in multilevel 2d-DWT
for image processing applications. Second International
Conference on Current Trends In Engineering and Technology
in India, 508-511.

[6]. Kahar, D. K. & Mehta, H. (2017). High speed vedic
multiplier used vedic mathematics. International Conference on
Intelligent Computing and Control Systems in India, 356-359.

[7]. Kunchigi, V. Kulkarni, L., & Kulkarni, S. (2012). High speed
and area efficient vedic multiplier. International Conference on
Devices, Circuits and Systems in India, 360-364.

[8]. Pohokar, S. P., Sisal, R. S., Gaikwad, K. M., Patil, M. M., &
Borse, R. (2015). Design and implementation of 16 × 16
multiplier using Vedic mathematics. International Conference
on Industrial Instrumentation and Control in India, 1174-1177.
[9]. Katreepalli, R., & Haniotakis, T. (2017). Power-delay-area
efficient design of vedic multiplier using adaptable manchester
carry chain adder. International Conference on Communication
and Signal Processing in India, 1418-1422.
[10]. Goswami, K., Pandey, B., Jain, A., & Singh, D. (2014).
Low Voltage Digitally Controlled Impedance Based Energy
Efficient Vedic Multiplier Design on 28nm FPGA. International
Conference on Computational Intelligence and Communication
Networks in India, 951-955, doi:10.1109/CICN.2014.201.
[11]. Lakshmi, G. S., Fatima, K., & Madhavi, B. K. (2016).
Implementation of high speed Vedic BCD Multiplier using
Vinculum method. IEEE Region 10 Conference (TENCON) in
Singapore. 147-151, doi:10.1109/TENCON.2016.7847978.

[12]. Rao, K. D., Gangadhar, C., & Korrai, P. K., (2016). FPGA
implementation of complex multiplier using minimum delay
Vedic real multiplier architecture. IEEE Uttar Pradesh Section
International Conference on Electrical, Computer and
Electronics Engineering in India, 580-584, doi:
10.1109/UPCON.2016.7894719.
[13]. Huddar, S. R., Rupanagudi, S. R., Janardhan, V.,
Mohan, S., & Sandya, S. (2013). Area and Speed Efficient
Arithmetic Logic Unit Design Using Ancient Vedic
Mathematics on FPGA. International conference on Advances
in Computing, Communication, and Control in Berlin, 475-
483.
[14]. Gupta, A., Malviya, U., & Kapse, V. (2012). Design of
speed, energy and power efficient reversible logic based
vedic ALU for digital processors. Nirma University
international conference in India, 1-06,
doi:10.1109/NUICONE.2012.6493259.
[15]. Kumar, D., & Anusudha (2013). RISC System Design in
Xilinx. International Journal of Advanced Research in
Electrical, Electronics and Instrumentation Engineering, 2(4),
1406-1411.
[16]. Pardo, D. F. G. (2006). Embedded microcontrollers and
FPGAs Soft-cores. Electronica-UNMSM. N(18), 3-14.
[17]. Dudhane, T. M., & Ravi, T. (2019). Design and
Implementation of Extended 16 Bit Co-operative Arithmetic and
Logic Unit (CALU) for 16 Bit Instructions. Journal Low Power
Electronics, 15(3), 309-314.

[18]. Prieto, J. E. R., Gomez, E. J., & Santa, F. M. (2017).
Implementation of an 8 Bit Soft-core microcontroller on Xilinx
Spartan FPGA family. Indian Journal of Science and
Technology, 10(22). 1-7.
[19]. Pushpalata, V. , & Mehta, K. K. (2012). Implementation
of an Efficient Multiplier based on Vedic Mathematics Using
EDA Tool. International Journal of Engineering and Advanced
Technology, 1(5), 75-79.
[20]. Kumar, G. G., & Charishma, V. (2012). Design of high
speed vedic multiplier using vedic mathematics
techniques. International Journal of Scientific and Research
Publications, 2(3), 2250-2253

[21]. Poornima, M., Patil, S. K., Shivukumar, Shridhar, K. P.,
& Sanjay, H. (2013). Implementation of Multiplier using Vedic
Algorithm. International Journal of Innovative Technology and
Exploring Engineering, 2(6), 219-223.
[22]. Nanda, A., & Shreetam, B. (2014). Design and
Implementation of Urdhva-Tiryagbhyam based Fast 8 × 8
Vedic Binary Multiplier. International Journal of Engineering
Research and Technology, 3(3), 1856-1859.
[23]. Senthilpari, C., Singh, A. K., & Diwakar, K. (2008).
Design of a low-power, high performance, 8 × 8 bit multiplier
using a Shannon-based adder cell. Microelectronics Journal,
39(5), 812-821.

[24]. Asmita, H. (2011). A Novel Design for High Speed
Multiplier for Digital Signal Processing Applications (Ancient
Indian Vedic mathematics approach). International Journal of
Technology and Engineering System, 2(1), 27-31.
[25]. Lee, J. D., Yong, J. Y., Lee, K. H., & Park, B. G.
(2001).Application of Dynamic Pass-Transistor Logic to an 8-
Bit Multiplier. Journal of the Korean Physical Society, 38(3),
220-223.
[26]. Lee, J. Y., Garvin, H. L., & Slayman, C. W. (1987). A
high-speed high-density silicon 8/spl times/8-bit parallel
multiplier. IEEE Journal of Solid-State Circuits, 22(1), 35-40.

How to cite this article: Dudhane, T. M.

and Ravi, T. (2020). Enhancement of Features of 8 Bit RISC Processor by

Implementing 8 Bit Shift/Add Multiplier. International Journal on Emerging Technologies, 11(2): 770–774.

